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An Algorithm to Synchronize the Time
of a Computer to Universal Time

Judah Levine

Abstract—1 describe an algorithm that synchronizes the time
of a computer clock to UTC with an uncertainty due to all causes
of about 1 ms RMS. The method uses periodic calibration data
obtained via dial-up telephone access to the NIST automated
computer time service. The interval between calibrations can be
chosen to provide optimum time accuracy or reduced accuracy at
reduced cost based on a preliminary evaluation of the statistical
performance of the clock. The computer can serve as a primary
network time server or can be used stand-alone whenever precise
time-stamps are required.

I. INTRODUCTION

N THIS paper I describe an algorithm that I have used

to synchronize the time of computer clocks to UTC with
an uncertainty of about | ms RMS. The algorithm combines
periodic time corrections based on a statistical evaluation of
the frequency of the clock oscillator with calibration data
obtained by calling the NIST automated computer time service
(ACTS) [1] using ordinary direct-dial telephone circuits.

Computers synchronized in this way can be used in data-
logging applications and wherever accurate digital time-stamps
are required: they can also serve as primary time servers
on a network. transmitting time to clients using any of the
established time protocols such as NTP [2]. The ACTS trans-
missions provide advance notice of leap seconds and of
the transitions to and from daylight saving time and this
information can also be automatically incorporated into the
time messages sent to client machines.

I have implemented this algorithm on several different types
of computers that are connected to local-area networks and
to the Internet. All of the machines are currently in use
as primary time servers. The stability of the server time is
limited primarily by the quality of the clock oscillator in all
cases, although some additional limitations are imposed by
the operating system. I discuss these limitations in more detail
below.

II. THE DETERMINISTIC PORTION OF THE CLOCK MODEL

In what follows, ¢, is an epoch at which I have measured the
time of the machine, and . is the measured time difference at
that epoch between the local clock and UTC. A positive value
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of x signifies that the local clock is fast. The effective rate of
the clock with respect to UTC during the interval between t;._
and #; is given by y;., and the filtered rate estimate at epoch 7
(using the method to be described below) is ;.. The rates are
dimensionless (seconds/second). The algorithm drives xy to
zero by estimating the optimum value for the filtered frequency
7, and uses this frequency to schedule periodic corrections to
the time of the local clock.

The time-difference measurements are approximately
equally spaced in epoch; this approximate interval is 7o.
It is measured by the local clock, and a telephone call to
the ACTS system is initiated when it has elapsed. The actual
interval between #;,_; and {y is 7; it is computed from the
ACTS messages and is larger than 7 by about 30 or 40 s—the
amount of time needed to complete the call to the ACTS time
server and to perform several housekeeping chores.

I predict the time difference at 7, using the average rate
offset estimated in the previous measurement cycle

Xy = Xpo1 + Gpo1 7w (h

where Xyis the predicted time difference. This prediction
equation contains only terms that are linear in the time
interval; 1 neglect any deterministic frequency aging during
the prediction interval. This is valid if the prediction interval
is a few thousand seconds or less; it may be inadequate for
intervals that are much longer than this.

If the difference between the predicted and measured time
differences is not too large (to be quantified below), I use this
time difference to modify the estimate of the average frequency
of the oscillator. The current frequency estimate, y;, computed
using the first-difference of the measured time differences

Y = K= N (@)
Tk
is combined with the previous estimate of the filtered fre-
quency to form an updated estimate

i1 + Gyr

1+G &

where G is computed from the statistical parameters of the
clock as is described in the next section.

This average frequency is the primary output of the model;
it is used to schedule periodic incremental time adjustments
to the local clock. These adjustments are scheduled frequently
enough so that the clock is not allowed to drift off time by
more than the measured jitter in consecutive time-difference
measurements made during a single calibration cycle. Since
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this uncertainty is about 0.5 ms, the nominal interval between
clock adjustments during the k-th time interval is
_0.0005

Ty, — . “4)
Yk

This nominal time interval is adjusted so that there are an
exact integral number of adjustment intervals in the calibration
interval 7. The calibration interval 7o can then be measured
by simply counting the number of adjustments that have
been performed. The actual adjustment is then recalculated
to the nearest microsecond as the product of this new interval
and the estimate of the filtered frequency. If, for example,
Tp = 1.15 x 1073, (4) gives t;, = 43s. If 79 = 30005, tx
would be adjusted to 40 s so that there would be exactly 75
adjustment intervals in a calibration interval. An adjustment
of 460 ps would be applied every 40 s, and a calibration
cycle would be initiated after the 75th adjustment had been
performed.

The complete algorithm is composed of two loops: an
"outer" loop activated every 7o s to update the parameters
of the model, and an “inner” loop that is activated every ti s
to make a small adjustment to the clock. The method outlined
in the previous paragraph simplifies the design of these two
loops by making the two periods commensurate. Additional
time adjustments will be scheduled if the time measurement
is large or if a leap second or similar time change is imminent.

Although the underlying deterministic model of the clock
does not change once the adjustment algorithm is enabled,
the detailed implementation is different. The goal of the
adjustment loop is to drive z to zero so that X, is identically
zero for all k. The consequences of this are discussed below.

[1. THE STOCHASTIC PORTION OF THE CLOCK MODEL

The primary function of the ACTS calibration data is to
provide a robust estimation of the frequency of the local clock
oscillator. Two noise processes will affect the estimate:

A. Noise in the Time-Difference Measurements Using ACTS

The ACTS hardware at NIST dynamically estimates the
delay in the telephone circuit and the modems between NIST
and the user. The one-way delay is estimated as one-half
of the round-trip delay between the two end-points. This
round-trip delay is measured by the transmitter each time
the user echoes the received on-time marker back to NIST,
and subsequent transmissions are advanced so that they will
arrive on-time at the user’s modem. The advance used for each
transmission is the average of the four most recent one-way
delay measurements. We have tested the performance of the
ACTS system using both local telephone circuits in Boulder,
Colorado and long-distance connections between Boulder and
radio station WWVH in Kauai, Hawaii [3]. The on-time
marker was received within 0.4 ms of UTC in all cases;
the RMS scatter during a single telephone connection varied
somewhat from call to call but was never greater than 90 ps.

The receiving software measures the time difference be-
tween the local clock and UTC using three consecutive ACTS
messages spaced | s apart; I use three readings to detect

outliers using majority voting. The time of the computer clock
is read each time the ACTS on-time marker is received, and
the program interpolates between ticks of the local clock
using a tight loop whose execution speed is measured during
cach calibration cycle. (This interpolation routine can be
disabled if the hardware and software environment support
an equivalent capability.) The frequency offset of the local
clock will produce a negligible time dispersion during this 3-s
interval so that the observed dispersion (calculated as max-
min) is a direct measure of the stability of the telephone
delay and the processing latency in the system. A typical
value for this dispersion is 0.4 ms, and the average dispersion
over the last 6 calibration cycles is used to test the current
measurements. (The exact number of cycles used to compute
the average is not critical.) If the scatter (max-min) among the
3 measurements in the current calibration cycle is less than
three times this average variation, the average of the three is
used; if only two of the three satisfy this criterion, the outlier
is rejected and the average of the two is accepted; if no two
values agree then the entire measurement cycle is rejected and
is reinitiated after a short delay. In all cases, the epoch of the
measurement is set to the mid-point of the data that have been
averaged. This logic adapts to slow changes in the reciprocity
of the telephone circuit or in the latency of the system, but
will reject a sudden change as an error.

The dispersion of the time-difference measurements can
be well characterized as white phase noise, which means
that the accuracy of the measurements could be improved by
averaging additional short-term data beyond the three values
used in the current implementation. (Short term in this context
means an interval that is short enough that I can neglect the
time dispersion in consecutive measurements due to the offset
frequency of the local oscillator.) This is not done because this
variation is not the dominant contributor to the total prediction
error budget, so that the increase in telephone charges would
not produce a corresponding increase in accuracy.

The algorithm estimates the frequency of the local oscillator
using the first difference of the phase measurements (2).
Since the fluctuations in the two phase measurements are
not correlated, the uncertainty in the frequency estimate is
V/2 times the measurement uncertainty divided by the time
interval between the measurements. If the frequency offset of
the local oscillator is on the order of 10~% (about 1 s/day),
and if the noise in the time difference measurements is to
contribute no more than 10% to the error budget of the
frequency determination, then the minimum interval between
calibration cycles is on the order of 1000 s.

B. Noise in the Clock Oscillator Frequency

Stochastic fluctuations in the frequency of the clock oscil-
lator are the dominant limit to the accuracy of the prediction
algorithm. The underlying physics of these fluctuations can
often be identified by examining how the power spectral
density of these fluctuations varies with Fourier frequency.
This description is particularly simple for most oscillators
[4] because the dependence on Fourier frequency can be
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approximated by a sum of five power-law noise processes

S hatf*. (5)

In this equation, S,(f) is the power spectral density at
Fourier frequency [ and the parameters h, are the constant
coefficients of its polynomial expansion. Each term in the
expansion corresponds to a physical process:

a = —2 Random Walk Frequency Modulation;
« = —1  Flicker Frequency Modulation;

a = (0 White Frequency Modulation;

« = +1  Flicker Phase Modulation;

« = +2  White Phase Modulation.

For most oscillators, this equation can be simplified even
further by noting that there are usually broad regions of
Fourier frequency space in which the spectral density can be
adequately modeled using only a single term, so that I can
speak of a Fourier regime in which the system is dominated
by white frequency modulation, etc. This characterization is
particularly useful because there is a statistically optimum
strategy for dealing with each noise process [4].

The Allan variance, usually denoted by 05(7), is a time-
domain measure of the noise of an oscillator [4]. It is pro-
portional to the time-average value of the square of the first
differences of consecutive frequency estimates. It is most
useful for this discussion because its variation with sampling
time 7 can also be approximated by a polynomial expansion
in 7

=2

Z a, 7" 6)

p=—1

a,(1) =

If the expansion of the spectral density in (5) can be
approximated by a single term, then the expansion of (6)
becomes a single term as well. If « < 1, the exponents of
the single surviving terms in each expansion are related by
v = —jt — 1 so that determining p determines « and allows
us to identify the underlying physical process that dominates
the stochastic variation. This identification provides a guide
to the optimum strategy for dealing with the oscillator in the
corresponding time and Fourier-frequency domains. (If a > 1,
the one-to-one relationship between « and p can be preserved
by computing the "modified" Allan variance as described in
the literature [4].) In particular, averaging a quantity will only
be an optimum strategy when its underlying noise spectrum is
white, and these sorts of analyses delineate the time-domain
regime in which such averaging converges to a statistically
robust estimate of the underlying physical parameter and is
therefore appropriate. This correspondence between time- and
frequency-domain representations is exploited throughout the
remainder of the discussion.

Fig. 1 (to be discussed in more detail later) shows the square
root of the Allan variance (often called the Allan deviation) as
a function of averaging time for a typical oscillator, and the
three lines drawn through the points identify three domains in
which different noise processes dominate the spectrum. Using
the relationship between g and «, I can identify the processes
that dominate the noise spectrum in three different domains.
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The white noise in the measurement process (white phase
noise) discussed in the previous section tends to be important
at the shortest periods. with the fluctuations in the frequency of
the oscillator itself becoming important at the longer periods.
Starting at about 10* s, the fluctuations in the oscillator
frequency are initially independent of Fourier frequency (white
frequency noise), but the power spectral density eventually
starts to increase as the Fourier frequency decreases, or,
equivalently, as the averaging time is made longer. The
dependence on Fourier frequency gradually changes to 1/f
(flicker frequency noise) and then to 1/f? (random-walk
frequency noise). As discussed in [4], these characterizations
are important because there is an optimum measurement
strategy for each noise type.

White frequency fluctuations are the "best" from a prediction
point of view, because an underlying mean frequency exists,
and the fractional fluctuations about this mean can be made
smaller with increased averaging. The increased averaging
is most easily implemented by decreasing 7o and therefore
G in (3) as discussed below. The error in predicting the
time in this region increases only as the square root of the
time interval between calibrations. The performance of the
algorithm can therefore be improved (with a corresponding
increase in telephone charges) by shortening the interval
between calibrations until the floor set by the white phase
noise discussed above is reached or until some other process,
such as jitter in the interrupt latency, becomes important.
Conversely, the performance of the time prediction algorithm
will deteriorate as the interval between calibrations is made
longer. The cost will decrease linearly with the time interval
and the prediction error will increase as the square root of this
quantity. .

This favorable dependence of the prediction error on the
square root of the calibration interval will not hold true at
longer periods as the nonwhite fluctuations in the oscillator
frequency become important. A mean frequency no longer
exists in this situation, and increased averaging does not im-
prove (and eventually degrades) the accuracy of the frequency
estimate. In other words, if G in (3) is made too small, the
frequency estimated by this equation does not respond to the
slow changes in mean clock frequency that characterize a
nonwhite spectral distribution. This consideration sets a lower
bound to G which must be enforced independent of the value
To. It is important to remember that while G and 7 are related
quantities, they are determined from different considerations:
G by the point at which the frequency deviations become
nonwhite and 7y by considerations of the trade-off between
calibration cost and time accuracy.

Once the spectral density of frequency fluctuations becomes
nonwhite the uncertainty in the time prediction begins to grow
linearly with the prediction interval, and will eventually grow
faster than linearly as the prediction interval is made still
longer. If they were secular or deterministic, these frequency
changes might be modeled by adding an aging parameter to
the prediction equation. Unfortunately, this is generally not
the case, and the best that can be done is to compute an
average frequency that gradually "forgets" older data with a
time-constant that is roughly equal to the time at which the
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frequency fluctuations deviate from a white spectrum. This is
another way of describing the purpose of the parameter G in
(3). If T}, is the measurement interval at which the frequency
fluctuations begin to deviate from a white spectrum, then
70

Tnur ’

The value of T, is determined by inspecting the square
root of the two-sample Allan variance of the free-running clock
oscillator and looking for the time interval at which the slope
begins to increase from -0.5 (indicating white frequency noise)
toward 0 (which is characteristic of flicker frequency noise). A
typical value for T, is 12 000 s; combining this result with
the previous discussion limits 7o to the approximate range
1000-12000 s for optimum performance—the performance
will not improve at shorter intervals because of the white phase
noise in the measurement process and will begin to degrade
at longer intervals because of stochastic nonwhite frequency
fluctuations. The corresponding values of G range from about
0.08 to 1.

I have found experimentally that using 7o = 3000s (G =
0.25) provides a good balance between prediction accuracy
and telephone cost; the resulting prediction loop has an error of
about 1 ms RMS. Using a smaller value for 79 would improve
the prediction error in principle, although this improvement
would not always be realized in practice because of interrupt
latency and similar issues to be discussed below.

G = D

IV. TIME AND FREQUENCY STEPS—THE RESET ALGORITHM

The prediction error is the difference between .y and X.
The ensemble of these errors will have a white distribution
about a mean of zero if the model described above is an
accurate representation of the performance of the oscillator
and if 7o has been properly chosen. The standard deviation is
a function of the noise sources discussed above.

Although it is very unlikely, the prediction error in any
cycle can differ from zero by many standard deviations without
violating the statistical model. Nevertheless, it is usually better
to treat these unlikely events as nonstatistical glitches rather
than as very-low-probability conforming events. This choice
is justified primarily by experience both with computer clocks
and with other types of systems which suffer from the same
kinds of problems. The simplest assumption is that a time step
has occurred in the local clock (due to a dropped interrupt,
for example), and the optimum strategy is to remove the time
step by a special adjustment and to not allow the frequency
estimator to be modified by this spurious measurement.

If the frequency has suddenly changed on the other hand,
removing the time step will not help, since the changed
frequency will result in a time step on the next calibration
cycle as well. (Modeling the initial glitch as a pure time-
step has in fact delayed the application of the proper fix
by an additional calibration cycle.) The algorithm tries to
repair a second consecutive time-step by modeling it as a
frequency step. The second time step will be removed using a
special adjustment as above, but the average frequency also
will be modified using (2) and (3). This process will be
allowed to continue for 1/G calibration cycles, since that is

the time constant for the new frequency to be incorporated
into the steering equation. If a time-step is again detected after
1/G cycles the algorithm assumes that another time-step has
occurred, and the entire process is repeated. Our experience is
that this process converges after one or two cycles unless the
hardware has failed in which case it never converges at all.

The reset behavior is triggered if the prediction error in any
cycle exceeds three times the standard deviation of the most
recent cycles so that a slow change in the performance of the
system will be automatically accommodated without causing
resets. This threshold is somewhat arbitrary and it has been
chosen as a reasonable compromise based on experience. Typi-
cal computer oscillators will trigger the reset logic about 1% of
the time (i.e., about once per week for a calibration interval of
about one hour). The reset frequency is not a measure of clock
quality since the reset trigger is relative to the dynamically-
determined standard deviation rather than to some absolute
threshold — poorer clocks will have poorer performance but
will not have more resets because the dynamically-determined
standard deviation will be higher.

A fundamental assumption of this reset logic is that a
large prediction error indicates a local problem rather than
a problem with ACTS or with the telephone network. This is
a fundamental difference from the clock model in the network
time protocol [2], for example, which is prepared to consider
the possibility that its received time data are wrong.

A more subtle version of this problem will arise when
the power spectral density of the noise in the measurement
process is substantially larger than the spectral density of the
noise of the clock itself. This is almost always true of the
Internet for calibration intervals of a few hours, for example,
so that the performance of a good local clock at these periods
may be better than the calibration source as seen through
the noisy transmission channel. If these calibration data are
nevertheless applied to steer the oscillator, its performance
at periods of a few hours will be poorer than its free-
running performance would have been, and an optimum lock
algorithm would have to be designed with these considerations
in mind. It is important to emphasize that simply averaging
consecutive measurements in this case is unlikely to be the
optimum choice, since the power spectrum of the Internet
measurements is almost certainly not white at periods of
a few hours. As a result, while the adjustment algorithm
and the time-difference measurement system are formally
independent “black boxes,” their designs are coupled through
the assumptions each component makes about the underlying
noise processes.

V. CLOCK RESOLUTION AND SYSTEM LATENCY

Most computers keep time by counting relatively infre-
quent “ticks”—interrupts that are generated periodically by
an internal quartz-crystal oscillator (or perhaps by the zero
crossings of the input ac power). The interval between ticks
is generally on the order of milliseconds. Some hardware
environments provide a much finer time resolution, and some
software environments make this finer resolution available to
a user task. It is also possible to interpolate between ticks
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using calibrated tight loops if the high resolution hardware
is not available, but such methods cannot be extended to
arbitrary precision because of fluctuations in the system load.
My experience is that it is possible to interpolate reliably to
only about 5% of the tick interval.

Time signals received through any input channel will be
degraded by the time needed to transmit the information
between the input port and the higher-level process. The
accuracy of time-difference measurements made using ACTS
transmissions have a special problem because those trans-
missions are received through one of the serial ports of the
system, and the serial-port driver is particularly complex.
Some systems split the serial port driver into two parts-—an
“outer” part that copies characters from the input hardware to
a memory buffer and is interrupt driven and an “inner” part
that completes the processing of the received characters and
places them in the user buffer. This inner part often runs as a
scheduled task rather than as an interrupt-driven one. Since the
scheduler is usually activated as the result of a timer interrupt,
there can be substantial jitter between the time a character
is received by the hardware and the time it is available to
the algorithm. This problem is particularly serious if wxj is
small, since then the ACTS on-time marker character will
arrive almost simultaneously with a clock interrupt and small
fluctuations in the arrival time may produce jitter of a full tick
in the arrival times as measured by the algorithm software.
In some implementations, the inner portion of the driver runs
only every few ticks so as to process characters in bunches
(in the name of efficiency), and this obviously makes the jitter
in the arrival time that much worse. These problems will add
white noise to the time measurements if they result in jitter
that is less than a few milliseconds. The jitter will result in a
systematic offset as well if it exceeds this value, because the
ACTS system may drop out of the mode in which it advances
the on-time markers to correct for the measured delay to a
mode in which it locks the advance at a constant value of
45 ms independent of the true delay. The resulting systematic
error in the delay measurement may be tens of milliseconds.

I can address the race condition in which the local tick and
the on-time marker arrive almost simultaneously by adding a
fixed time offset to the lock algorithm so that the local time is
offset by one-half of a tick from the time in the ACTS message.
This replaces the race condition by a systematic offset on the
order of one-half of a tick. While this is not an optimum
solution, the processing delay is likely to be stable enough to
keep the ACTS system running in its measured-delay mode.
There is no good solution to the multi- tick latency problem;
I have modified the serial-line drivers of one vendor to reduce
the magnitude of this problem, but such modifications require
access to the source code.

VI. INITIAL START-UP

The first step in running the algorithm on a new machine
is to estimate the performance of the clock oscillator by
running the algorithm software in a calibration-only mode
which periodically measures z; but does not uses these data to
adjust the local clock. Typical calibration experiments consist
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of making 10 consecutive time difference measurements 1 s
apart to estimate the measurement noise itself followed by
100 time differences spaced about 1 h apart to measure the
two sample Allan variance as a function of time lag out to
lags of 30 or 40 h. (The maximum lag is limited to one-third
of the length of the data set for statistical stability.) This is
usually sufficient to show the point at which white frequency
noise ceases to be the dominant noise process. All of the
parameters of the algorithm can be estimated from these data
using the procedures that I have outlined above. This analysis
is usually necessary only once since the parameters of the
oscillator change very slowly with time.

Subsequent cold starts reestimate the average frequency of
the oscillator by letting it free run for three calibration cycles.
If the prediction error during the restart procedure is less than
3 times the value expected from the free-running calibration
tests, then the algorithm advances to the locked mode and
begins operating as described above. If this is not the case the
cold-start procedure re-estimates the parameters and advances
to the locked mode if this effort is successful. Otherwise the
algorithm wiil remain in the start-up procedure indefinitely.
This is probably indicative of a hardware failure.

VII. IMPLEMENTATION OF THE
ALGORITHM—DETAILS AND EXAMPLES

The underlying deterministic model of the algorithm does
not change when the computer time is being adjusted, but the
details are different. I consider three important effects:

1) Since the time of the local clock is being continuously
adjusted in accordance with (4), the periodic measure-
ments with respect to ACTS do not see a free-running
clock, but rather one whose apparent frequency during
the interval between two calibrations has been changed
by Y.

2) Since the goal of the algorithm is to drive xj to zero,
Xk = 0 for all k; to the extent that the algorithm is
successful, it is also true that ;. = xp_1 = 0 as well.

3) If x,—1 was large, then a time step was sensed during
the previous calibration cycle, and this time step was
removed by a special time adjustment. The current
prediction therefore should not use the measured value
of wr_1 but a value of 0.

As a result of these considerations, the implementation of
the algorithm is modified to include time steering as well as
frequency steering. In addition to the periodic adjustments
at intervals of ¢ s, there is an adjustment of magnitude xj
after each calibration cycle. The periodic adjustments correct
the average frequency of the local clock and the discrete
time adjustments remove the short-term fluctuations in the
frequency and keep it on time. As a result, x;_; = 0. (The
only difference between normal operation and what happens
when a time-step is detected is that the frequency update loop
is bypassed on a reset.) Equation (1) becomes

Ye-1Te — 0 (8)
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Fig. 1. The two-sample Allan deviation for time_a when its clock is
free-running. The reference lines drawn through the points have slopes of
_1,-0.5 and 0, showing the domains where the fluctuations in the oscillator
can be characterized as white phase noise, white frequency noise, and flicker
frequency noise, respectively.

and (2) is replaced by

. ¢*
Yp = Y—1+ — -
Tk

)
Equations (3) and (4) are not altered.

I can illustrate the algorithm by showing its performance on
two computers. The first is a machine whose name is time_a.
The first step in implementing the algorithm is evaluating the
free-running performance of the clock oscillator. Consecutive
time differences spaced 1 s apart exhibited a scatter of 0.5
ms peak to peak. The time of time_a with respect to ACTS
was then measured every 600 s, and the square root of the
two-sample Allan variance of these data are shown in Fig. 1.
Reference lines with slopes of —1, -0.5, and O are drawn
through the points, and the transition zones between different
noise types are clearly visible.

Although I always use these plots to determine the operating
point that produces the best time performance, the plot can also
be used to estimate the operating point that would produce a
lower operating cost. The last point in the figure shows that the
frequency jitter is about 1 x 107 at a measurement interval
of 307200 s. If that interval was used as 7p, the frequency
jitter in the oscillator would result in a time jitter of about
0.03 s. This is about 30 times worse than the performance I
have achieved, but the telephone charges have been reduced
by about a factor of 100 (from one call every 3000 s to one
every 300000 s).

The algorithm on time_a has been running for about 110
days; the zj values for this period have a mean of 0.1 ms
and a standard deviation of 0.16 ms. The square root of the
two-sample Allan variance of these data are shown in Fig. 2.
A reference line with a slope of —1 has been drawn through
the data for comparison, and the data exhibit this slope over
the entire range, suggesting that the residuals of the locking
algorithm are pure white phase noise, which is the optimum
performance that can be realized using the existing hardware

time_a, Controlied Clock
= - T
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Fig. 2. The two-sample Allan deviation for time_a when its clock is being

controlled by the algorithm described in this paper. The reference line drawn

through the points has a slope of -1, which is characteristic of white phase

noise.

and measurement method. Note especially that the noise which
dominates the performance of the free-running oscillator at
longer periods has been totally removed. A Fourier transform
of the z values shows that the data are not quite white, and
that there is a weak peak near 1 cycle/day with an amplitude
of 0.1 ms. This is presumably the response of the oscillator to
temperature (and possibly to input voltage), and running the
system in an environment that had better temperature stability
(the temperature in the computer room varies by +2°C) would
probably improve the performance of the oscillator.

The second machine is named baldwin. It suffered initially
from the latency problems in the serial line driver that 1
discussed above, and I eventually had to modify the driver to
obtain acceptable performance. The free-running performance
of its clock oscillator is shown in Fig. 3. Reference lines with
slopes of —1 and —0.5 are added to the points for reference. The
performance at short-term is roughly similar to that of time_a,
but its performance at longer periods is substantially worse. A
power spectrum of its time differences shows a distinct peak
near | cycle/day which is presumably driven by temperature
with additional peaks at periods of several hours of unknown
origin. A formal analysis of these data lead us to use roughly
the same parameters on baldwin as I used on time_a but
the performance will not be as good because the underlying
hardware is noisier. This is confirmed by Fig. 4, which shows
the square root of the Allan variance of the oscillator when
the time is being adjusted by the algorithm. The RMS noise
is about four times worse than time_a.

VIII. COMPARISON WITH NTP

1 have conducted several experiments to compare the perfor-
mance of this algorithm with NTP. Each of these experiments
used two machines that were physically close together on the
same network. The first experiment used two machines named
baldwin and pogo. The time of baldwin was controlled by
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Fig. 3. The two-sample Allan deviation for baldwin when its clock is

free-running. The reference lines drawn through the points have slopes of
-1 and -0.5, showing the domains where the fluctuations in the oscillator can
be characterized as white phase noise, and white frequency noise. respectively.
Note the excess noise at intermediate periods.

baldwin, Controlled Clock

-6.75

Logarithm of Sqrt of Allan Variance
4

-1.25 a

1.5 ]

175 ~ -

B3 SN : P SR I - I | E
325 35 375 4 425 45 475 5 525

Logarithm of Meas. Interval in s.

Fig. 4. The two-sample Allan deviation for baldwin when its clock is being
controlled by the algorithm described in this paper. The reference line drawn
through the points has a slope of -1, which is characteristic of white phase
noise.

dialing ACTS periodically and using this algorithm to adjust
the clock; the time of pogo was controlled by NTP using a
primary radio-clock for the time reference. I assumed that
the variations in the time of pogo were small enough so that
they could be neglected. The time of baldwin with respect
to pogo as estimated by NTP was compared with the time
difference measured by calling ACTS. The two time series are
shown in Figs. 5 and 6. The overall agreement is very good
— the difference is not greater than 2.5 ms anywhere and is
generally much less than this value. I repeated this experiment
with a second pair of identical machines named time_a and
time_b. These machines had better clocks than baldwin and
the agreement between the two methods was much closer,
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Peerstat Data, baldwin - pogo
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Fig. 5. The time difference between baldwin and pogo measured by NTP

on pogo.
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Fig. 6. The time difference between baldwin and ACTS. The limits of this
plot are identical to those of the preceding figure.

as discussed below. (The short-term stability of the clock is
important because the two measurements via ACTS and NTP
are not simultaneous.)

My final experiment compared the adjustment algorithm that
I describe here with the clock model of NTP. The experiment
was conducted in three phases using time_b. In the first phase,
time_b was locked to a weighted average of the times of
time_a (a machine that is very close by and is on the same
local network cable) and to pogo (a machine that is about
a dozen hops and 1500 km away on the Internet backbone)
using NTP operating according to its standard specifications
for this multiple-peer configuration. I assume that the path
between time_b and pogo is a typical Internet path. In the
second phase, time_b was locked via NTP using only time_a
as a peer and in the third phase, time_b is locked via periodic
calls to ACTS.
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time_a - time_b via Peerstat Data
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Fig. 7. The time difference between time_a and time_b measured by NTP

on time_b. The vertical line near day number 8 shows the transition between
phase 1 and phase 2 of the experiment as described in the text.
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Fig. 8. The time difference between ACTS and time_b. The line near day
8 shows the transition between phase 1 and phase 2 of the experiment as
described in the text. The limits of this plot are identical to those of the
preceding figure.

Fig. 7 shows the NTP estimates of time_a-time_b for the
first two phases of the experiment and Fig. 8 shows the
estimates of ACTS-time_b for the same time period. The clock
on time_b is better than the one on baldwin and the two plots
agree almost perfectly. The vertical line on both plots near
day 8.5 shows the transition between phase 1 and phase 2.
Removing the peer that was separated by a transcontinental
connection produced a change in the mean value of time_b by
a few milliseconds and possibly some change in the character
of the high frequency fluctuations. Fig. 9 shows the transition
between phase 2 and phase 3—the switch between a clock
locked using NTP and the same clock controlled using the
current algorithm. The switch-over was made near day 27 (first
vertical line) and the algorithm switched to its locked mode
about a day later (second vertical line).
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Fig. 9. The time difference between ACTS and time_b. This figure is a
continuation of Fig. 8; the origin of this figure is at day 20 of the Fig. 8. The
first line near day 27 shows the transition between phase 2 and phase 3 of
the experiment as described in the text, and the second, longer line shows the
point at which the local algorithm switched from estimating the parameters
of the local clock to adjusting its time.

The current algorithm produces much quieter performance
than NTP, especially at intermediate periods. 1 think this
is probably due to the advantages of using ACTS, which
does not suffer from the intermediate-period fluctuations in
delay that characterize a typical Internet path. The short-term
performance is somewhat worse than NTP, and I think this is
due to the fact that the nominal calibration interval of 3000 s
is significantly longer than the corresponding NTP parameter.
Neither the Internet nor the ACTS system can have fluctuations
at the very longest periods so that the performance of the two
algorithms become very similar at periods of a few weeks or
longer.

The algorithm I have described in based on a frequency-lock
approach, and this is fundamentally different from the phase-
lock approach that is the basis of the clock model used in NTP.
While 1 do not think that either algorithm is fundamentally
“etter” or more powerful in an a-priori sense, the frequency
lock approach is better suited to the noise characteristics of
the crystal oscillators that are usually used in computers and
is therefore able to provide better (or at least comparable)
performance with much less frequent calibrations.

The performance of any algorithm will always be limited by
the underlying noise in the clock and the calibration channel,
and a statistically optimum algorithm must be able to separate
the two contributions to the noise budget in order to get the
best performance. A frequency-lock algorithm based on ACTS
has a distinct advantage over NTP here. The noise process in
the ACTS channel is dominated by white phase noise which
is most important at high Fourier frequencies, while the noise
process in the clock is dominated by flicker and random-
walk frequency-modulations, which become more important
at lower Fourier frequencies. The contributions of the clock
and the channel to the noise budget can be cleanly separated
based on Fourier frequency. A simplistic way of saying this
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is that fluctuations with high Fourier frequencies are ascribed
to channel while the low Fourier frequencies are assigned to
the clock.

The variances of the clock and the channel do not separate
so cleanly in the NTP environment. The channel noise tends
to increase at lower Fourier frequencies, which is just where
the clock needs more help because its noise spectrum is
no longer white either. To complicate the problem, simple
averaging is significantly less than optimum from a statistical
point of view at these Fourier frequencies, since neither the
conventional mean nor the conventional variance are well-
defined for processes dominated by flicker or random-walk
effects. it is difficult to say whether a frequency-lock loop
would be better in this environment. The decision would

'depend on which parameter (time or frequency or perhaps

something else) is closest to white and can therefore be
safely averaged to yield a statistically robust estimate of the
correction to be applied to the local clock.

IX. SUMMARY AND CONCLUSIONS

I have designed a new algorithm for controlling the time of
a computer using periodic dial-up connections to the ACTS
system at NIST. The algorithm can provide time performance
that is limited primarily by the quality of the clock oscillator,
although the latency in the serial-line driver can be a problem
in some systems. Machines that are synchronized in this way
can serve as primary network time servers, transmitting time to
clients in NTP or in any other application where accurate and
traceable time is needed. The machines need not be connected
to any network; only a modem and a standard telephone
line are required. The algorithm is not tied to any particular
hardware or software environment, and I have implemented it
on several commonly-available systems with no fundamental
changes. The performance in all of the cases was comparable
to the results I have presented here.
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